跳到主要内容

LLM 代理的历史与未来

· 阅读需 3 分钟

LLM 代理的轨迹和潜力

介绍

  • 代理的定义:与环境(物理、数字或人类)交互的智能系统。
  • 演变:从像 ELIZA(1966)这样的符号 AI 代理到现代基于 LLM 的推理代理。

核心概念

  1. 代理类型
    • 文本代理:像 ELIZA(1966)这样的基于规则的系统,范围有限。
    • LLM 代理:利用大型语言模型进行多功能的文本交互。
    • 推理代理:结合推理和行动,能够在各个领域进行决策。
  2. 代理目标
    • 执行问答(QA)、游戏解决或现实世界自动化等任务。
    • 平衡推理(内部行动)和行动(外部反馈)。

LLM 代理的关键发展

  1. 推理方法
    • 链式思维(CoT):通过逐步推理提高准确性。
    • ReAct 范式:将推理与行动结合进行系统探索和反馈。
  2. 技术里程碑
    • 零样本和少样本学习:通过最少的例子实现通用性。
    • 记忆整合:结合短期(基于上下文)和长期记忆以实现持久学习。
  3. 工具和应用
    • 代码增强:通过编程方法增强计算推理。
    • 检索增强生成(RAG):利用外部知识来源,如 API 或搜索引擎。
    • 复杂任务自动化:在机器人和化学领域的体现推理,以 ChemCrow 为例。

局限性

  • 实际挑战
    • 处理现实世界环境的困难(例如,处理不完整数据的决策)。
    • 易受无关或对抗性上下文的影响。
  • 可扩展性问题
    • 现实世界机器人与数字模拟的权衡。
    • 在特定领域进行微调和数据收集的高成本。

研究方向

  • 统一解决方案:将多样化任务简化为可推广的框架(例如,用于探索和决策的 ReAct)。
  • 先进的记忆架构:从仅追加日志转向自适应的、可写的长期记忆系统。
  • 与人类合作:专注于增强人类创造力和解决问题的能力。

未来展望

  • 新兴基准
    • 用于软件工程任务的 SWE-Bench。
    • 用于在动态环境中微调 LLM 代理的 FireAct。
  • 更广泛的影响
    • 增强的数字自动化。
    • 在软件工程、科学发现和网络自动化等领域提供复杂问题解决的可扩展解决方案。
Want to keep learning more?