跳到主要内容

2 篇博文 含有标签「技术」

查看所有标签

打造 AI 原生出版系统:TianPan.co 的进化之路

· 阅读需 6 分钟

TianPan.co 的发展历程,正是网络出版演进的缩影。从最初的静态 HTML 页面,到如今融合 AI 的智能内容平台,我们始终在探索突破。随着第三个版本的发布,让我和大家分享我们是如何在 AI 时代重新思考并实现现代出版平台的。

AI 原生出版

从 WordPress 到 AI 原生的蜕变

2009 年,TianPan.co 和许多技术博客一样,起步于一台配置简单的 VPS 上的 WordPress 站点。那时的工作流程很简单:写作、发布、继续写作。随着技术的发展,我们的需求也在不断升级。第一版选择了 Octopress 和 GitHub,开始将内容作为代码来管理,这种方式更贴近开发者的使用习惯。到了第二版,我们引入了 GraphQL、服务器端渲染等现代网络技术,同时推出了 React Native 移动应用。

如今,技术环境已发生翻天覆地的变化。AI 不再是一个简单的概念,而是正在深刻改变我们创建、组织和分享知识的方式。正是这样的认知,促使我们开发第三版时提出了一个大胆的设想:如果我们从零开始,把 AI 作为核心来设计一个出版系统,会擦出怎样的火花?

AI 原生平台的技术底座

第三版在多个维度突破了传统博客平台的局限:

  1. 内容即数据:所有内容都以 markdown 格式存储,便于 AI 系统实时处理。这不仅仅是为了机器可读,更是让 AI 真正参与到内容生命周期的各个环节。

  2. 分散发布,统一管理:内容会自动从中央仓库流向 Telegram、Discord、Twitter 等多个平台。与传统的多渠道发布不同,AI 能够智能地保持内容一致性,并针对不同平台特点做出优化。

  3. 基础设施升级:我们从最初的单核 1GB 内存配置,升级到更强大的基础设施。这样的升级不仅提升了系统可靠性,也为实时内容分析、自动编辑等 AI 驱动的功能提供了算力保障。

技术架构充分体现了这种"AI 优先"的理念:

.
├── _inbox # AI 监控的草稿区
├── notes # 已发布的英文笔记
├── notes-zh # 已发布的中文笔记
├── crm # 个人关系管理
├── ledger # 个人账本(基于 beancount.io)
├── packages
│ ├── chat-tianpan # 基于 LlamaIndex 的内容交互接口
│ ├── website # tianpan.co 网站源码
│ ├── prompts # AI 系统提示词库
│ └── scripts # AI 处理流水线

突破出版边界:构建融合的知识体系

第三版最大的特色,在于它巧妙地整合了多个知识模块:

  • 智能人脉管理:通过 AI 增强的笔记系统管理人际关系
  • 财务追踪:集成 beancount.io 实现完整的账本管理
  • 多语言支持:智能翻译与本地化
  • 互动学习:AI 驱动的对话式内容探索

工作流程也实现了质的飞跃:

  1. 以 markdown 格式创建内容
  2. 触发 CI/CD 流水线进行 AI 处理
  3. 通过 Zapier 实现多平台分发
  4. AI 编辑通过 GitHub Issues 持续提供优化建议

展望:技术出版的新图景

我们的目标不仅是打造一个更好的博客系统,更是重新定义 AI 时代下技术知识的分享方式。系统的每个组件都是实验新型 AI 能力的沃土,随时准备迎接进化。

真正令人兴奋的,不仅是技术架构本身,更是它开启的无限可能。AI 能否帮我们发现看似不相关的技术概念之间的潜在联系?如何让复杂的技术内容更容易被更多人理解?未来是否能轻松地实现富媒体内容的智能创作?

这些都是 TianPan.co v3 正在探索的方向。在这个实验场中,AI 不再是简单的工具,而是创造和传播知识的得力助手。

一亿美元的遥测错误:OpenAI 的故障教会我们系统设计的知识

· 阅读需 5 分钟

在 2024 年 12 月 11 日,OpenAI 发生了一次灾难性的故障,使 ChatGPT、他们的 API 和 Sora 中断了超过四个小时。虽然故障发生在每家公司身上,但这次故障特别引人注目,因为它揭示了现代系统设计的一个关键教训:有时我们添加的工具以防止故障,反而成为故障的根源。

十亿美元的讽刺

有趣的是:这次故障并不是由于黑客攻击、部署失败,甚至不是他们的 AI 模型中的错误引起的。相反,它是由于一个旨在提高可靠性的工具引起的。OpenAI 正在添加更好的监控以防止故障时,意外地造成了他们有史以来最大的故障之一。

这就像雇佣一个保安,结果他把所有人都锁在了楼外。

故障滚出的雪球

事件的经过如下:

  1. OpenAI 部署了一个新的遥测服务,以更好地监控他们的系统
  2. 该服务用 API 请求淹没了他们的 Kubernetes 控制面板
  3. 当控制面板失败时,DNS 解析也中断了
  4. 没有 DNS,服务无法相互找到
  5. 工程师无法修复问题,因为他们需要控制面板来移除有问题的服务

但最有趣的部分不是故障本身,而是多个保障系统同时失败:

  1. 测试没有捕捉到问题,因为它只在规模上出现
  2. DNS 缓存掩盖了问题,足够长的时间让它传播到各处
  3. 用来修复问题的系统恰恰是那些崩溃的系统

三个关键教训

1. 规模改变一切

遥测服务在测试中工作得很好。问题只在部署到数千个节点的集群时出现。这突显了现代系统设计中的一个基本挑战:一些问题只在规模上出现。

2. 保障系统可能成为风险因素

OpenAI 的 DNS 缓存,旨在提高可靠性,实际上通过掩盖问题使情况变得更糟,直到为时已晚。他们的 Kubernetes 控制面板,旨在管理集群健康,成为了单点故障。

3. 恢复计划需要恢复计划

最令人震惊的部分?工程师无法修复问题,因为他们需要正常工作的系统来修复损坏的系统。这就像需要一把梯子才能够到你需要的梯子。

系统设计的未来

OpenAI 的响应计划揭示了系统设计的未来走向:

  1. 解耦关键系统:他们将 Kubernetes 数据面板与控制面板分开,减少相互依赖
  2. 改进测试:他们正在添加故障注入测试,以模拟大规模故障
  3. 应急程序:他们正在建立即使在其他一切失败时也能工作的紧急访问系统

这对你的公司意味着什么

即使你不是在 OpenAI 的规模下运营,这些教训依然适用:

  1. 在规模上测试,而不仅仅是测试功能
  2. 提前建立紧急访问系统
  3. 质疑你的保障系统——它们可能隐藏着风险

可靠系统的未来并不是防止所有故障,而是确保我们能够快速而优雅地从故障中恢复。

记住:最危险的问题不是我们能预见到的,而是那些从我们构建的保障系统中突然冒出来的。