跳到主要内容

2 篇博文 含有标签「Machine Learning」

查看所有标签

LLM Reasoning: Key Ideas and Limitations

· 阅读需 2 分钟

Reasoning is pivotal for advancing LLM capabilities

Introduction

  • Expectations for AI: Solving complex math problems, discovering scientific theories, achieving AGI.
  • Baseline Expectation: AI should emulate human-like learning with few examples.

Key Concepts

  • What is Missing in ML?
    • Reasoning: The ability to logically derive answers from minimal examples.

Toy Problem: Last Letter Concatenation

  • Problem

    : Extract the last letters of words and concatenate them.

    • Example: "Elon Musk" → "nk".
  • Traditional ML: Requires significant labeled data.

  • LLMs: Achieve 100% accuracy with one demonstration using reasoning.

Importance of Intermediate Steps

  • Humans solve problems through reasoning and intermediate steps.
  • Example:
    • Input: "Elon Musk"
    • Reasoning: Last letter of "Elon" = "n", of "Musk" = "k".
    • Output: "nk".

Advancements in Reasoning Approaches

  1. Chain-of-Thought (CoT) Prompting
    • Breaking problems into logical steps.
    • Examples from math word problems demonstrate enhanced problem-solving accuracy.
  2. Least-to-Most Prompting
    • Decomposing problems into easier sub-questions for gradual generalization.
  3. Analogical Reasoning
    • Adapting solutions from related problems.
    • Example: Finding the area of a square by recalling distance formula logic.
  4. Zero-Shot and Few-Shot CoT
    • Triggering reasoning without explicit examples.
  5. Self-Consistency in Decoding
    • Sampling multiple responses to improve step-by-step reasoning accuracy.

Limitations

  • Distraction by Irrelevant Context
    • Adding irrelevant details significantly lowers performance.
    • Solution: Explicitly instructing the model to ignore distractions.
  • Challenges in Self-Correction
    • LLMs can fail to self-correct errors, sometimes worsening correct answers.
    • Oracle feedback is essential for effective corrections.
  • Premise Order Matters
    • Performance drops with re-ordered problem premises, emphasizing logical progression.

Practical Implications

  • Intermediate reasoning steps are crucial for solving serial problems.
  • Techniques like self-debugging with unit tests are promising for future improvements.

Future Directions

  1. Defining the right problem is critical for progress.
  2. Solving reasoning limitations by developing models that autonomously address these issues.

生成式 AI 的企业趋势

· 阅读需 2 分钟

生成式 AI 的关键趋势

  • 机器学习进步重新定义计算能力
  • 计算和硬件需求的演变
  • 扩展(计算、数据、模型规模)改善结果

AI 能力的进展

  • 图像识别
    • 示例:“豹”分类,90.88% 准确率(ImageNet)
    • AlexNet 初始性能:63.3%
  • 语音识别
    • 在 LibriSpeech test-other 数据集上的性能提升

Transformers 和基础模型

  • 关键技术
    • 自回归训练
    • 使用数万亿标记进行预训练
    • 示例:“猫坐在垫子上”
  • 优化
    • 监督微调 (SFT)
    • 来自人类反馈的强化学习 (RLHF)

Gemini 模型

  • 项目启动于 2023 年 2 月
  • Gemini 1.0 发布:2023 年 12 月
  • Gemini 1.5 发布:2024 年 2 月
  • 特点
    • 跨文本、图像和视频的多模态推理
    • 长上下文能力(最多 1000 万标记)
    • 降低幻觉率

企业 AI 趋势

  1. 随着数据需求的减少,加速 AI 开发
  2. 从单一模态系统向多模态系统过渡
  3. 从密集模型架构向稀疏模型架构转变
  4. 可扩展和灵活平台的重要性
  5. API 成本下降
  6. LLMs 和搜索的集成

定制化和效率

  • 技术
    • 微调和参数高效调优(例如,LoRA)
    • 蒸馏以优化性能和延迟
  • 挑战
    • 在部署中平衡成本、延迟和性能
  • 函数调用
    • 集成 API、数据库和外部系统
    • 应用:数据检索、工作流程、客户支持

解决限制

  • 问题
    • 冻结的训练数据导致知识过时
    • 高幻觉率
    • 不一致的结构化输出
  • 解决方案
    • 检索增强生成 (RAG) 框架
    • 以私有、新鲜和权威数据为基础
    • 带有引用的结构化输出

生成式 AI 的未来

  • 增强的多模态推理和扩展的上下文能力
  • 优化以降低成本和提高可扩展性
  • 改进输出的基础性和事实准确性