Skip to main content

How Netflix Serves Viewing Data?

Motivation

How to keep users' viewing data in scale (billions of events per day)?

Here, viewing data means...

  1. viewing history. What titles have I watched?
  2. viewing progress. Where did I leave off in a given title?
  3. on-going viewers. What else is being watched on my account right now?

Architecture

Netflix Viewing Data Architecture

The viewing service has two tiers:

  1. stateful tier = active views stored in memory

    • Why? to support the highest volume read/write
    • How to scale out?
      • partitioned into N stateful nodes by account_id mod N
        • One problem is that load is not evenly distributed and hence the system is subject to hot spots
      • CP over AP in CAP theorem, and there is no replica of active states.
        • One failed node will impact 1/nth of the members. So they use stale data to degrade gracefully.
  2. stateless tier = data persistence = Cassandra + Memcached

    • Use Cassandra for very high volume, low latency writes.
      • Data is evenly distributed. No hot spots because of consistent hashing with virtual nodes to partition the data.
    • Use Memcached for very high volume, low latency reads.
      • How to update the cache?
        • after writing to Cassandra, write the updated data back to Memcached
        • eventually consistent to handling multiple writers with a short cache entry TTL and a periodic cache refresh.
      • in the future, prefer Redis' appending operation to a time-ordered list over "read-modify-writes" in Memcached.
References:Want to keep learning more?